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Announcements!
● Read the Weekly Post

● HW 3 and Vitamin 3 have been released, due Thursday (grace period Fri)

● HW 3 covers last Wednesday, Thursday and Yesterday’s lecture.

● In this lecture, we will use small prime numbers as examples but in implementation 

we use large prime numbers (256 bits ≈ 1077 or more). 
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Finite Fields
Recall, that we talked about mod as a space. 

When operating in a mod p where p is prime, we are working in a finite field. 
A finite field is just a space of numbers, where we can define addition, subtraction, multiplication and 
division for all numbers in that space. 

We will call this finite field a “Galois Field,” denoted GF(p)
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Polynomials in GF(p)
A polynomial in GF(p) 

f(x) = adx
d + ad-1x

d-1 + … + a2x
2 + a1x + a0  (mod p)

is specified by coefficients ad, …, a0
f(x) contains point (a, b) if b = f(a) 

Polynomials over reals: ad, …, a0 ∈ ℜ, use x ∈ ℜ
Polynomials in GF(p) have ad, …, a0 ∈ {0, …, p-1}, use x ∈ {0, …, p-1}

Example: f(x) = 2x3 - 2x 
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Polynomials in GF(p)
A polynomial in GF(p) 

f(x) = adx
d + ad-1x

d-1 + … + a2x
2 + a1x + a0  (mod p)

is specified by coefficients ad, …, a0

f(x) contains point (a, b) if b = f(a) 

The degree of a polynomial is the highest exponent in the 
polynomial

We say that a is a root (or zero) of a polynomial if f(a) = 0

Example: f(x) = 2x3 - 2x 
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Degree d ⇒ at most d roots
Property 1: 
A non-zero polynomial of degree d has 
at most d roots

Examples:
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d+1 points ⇒ unique degree d polynomial
We say a point is a x, y pair where y = f(x) 

Property 2: 
Given d+1 pairs: (x1, y1), …, (xd+1, yd+1) with all the xi distinct, there is a unique polynomial f(x) of degree 
(at most) d such that f(xi) = yi  for 1 ≤ i ≤ d+1

There is a unique degree d polynomial that goes through a given set of d+1 points

Example:
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Implication of Properties on a Line
Suppose we have some linear polynomial

f(x) = a1x + a0

Property 1 says that if the line isn’t just f(x) = 0 (x-axis) then it has at most 1 root. 
Property 2 says two points define a line. 

How to find a line that goes through a given two points:
Example: (1, 2) and (3, 4) 
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Polynomial Equivalence
We state that two polynomials f and g are equivalent if for all x in GF(p), f(x) = g(x) 

You can also show two polynomials are equivalent if they have the exact same 
coefficients.

Examples in GF(7):
f1(x) = x + 1
f2(x) = 8x + 1
f3(x) = x + 8
f4(x) = x7 + 1
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Polynomials from Points via Interpolation
Find the degree two polynomial in GF(5) that contains (1, 2); (2, 4); (3, 0)
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Polynomials from Points via Gaussian Elimination
Find the degree two polynomial in GF(5) that contains (1, 2); (2, 4); (3, 0)
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Proving Property 2 
Property 2: Given d+1 pairs: (x1, y1), …, (xd+1, yd+1) with all the xi distinct, there is a unique polynomial f(x) 
of degree (at most) d such that f(xi) = yi  for 1 ≤ i ≤ d+1
“d+1 points, define a unique degree d polynomial”

1. We showed the existence of  a polynomial via interpolation
2. We need to show uniqueness

Proof for uniqueness: 

Lecture 3B -  Slide 12UC Berkeley EECS 70 - Tarang Srivastava

0
-

✓2
✓

☆ pens -qcns -1-0
means it's not

Assume for contradiction that given some 0+1 points always zero.
the exist two degree d polynomials that contain the sane

d -4 points , call them pens and glad. Since
, pens# qcaj

☆
Poe>- goes -1-0 .

Notice that pc.se) - qcn, is the a degree d polynomial
at most . But plus -qca> = 0 for the del points that padq
share . This is a contradiction since by property / per)

-

que)

can have d roots at most
.



Long Division
It is possible to divide polynomials. That is dividing p(x) by q(x)  results in 

p(x) = q’(x) q(x) + r(x)
Example: p(x) = x3+x2-1 and q(x) = x - 1
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Proving Property 1 
Property 1: A non-zero polynomial of degree d has at most d roots
We will prove this by proving these two other claims. 

Claim 1: If a is a root of a polynomial p(x) with degree d ≥ 1, then p(x) = (x-a)q(x) for a polynomial q(x) 
with degree d - 1

Claim 2: A polynomial p(x) of degree d with distinct roots a1, …, ad can be written as 
p(x) = c(x-a1)...(x-ad) where c is just a number. 
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Proving Property 1 with Claim 1
Property 1: A non-zero polynomial of degree d has at most d roots
Claim 1: If a is a root of a polynomial p(x) with degree d ≥ 1, then p(x) = (x-a)q(x) for a polynomial q(x) 
with degree d - 1
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Proving Property 1 with Claim 2
Property 1: A non-zero polynomial of degree d has at most d roots
Claim 2: A polynomial p(x) of degree d with distinct roots a1, …, ad can be written as 
p(x) = c(x-a1)...(x-ad) where c is just a number. 
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Secret Sharing 
There is a code that can be used to launch nuclear weapons. 
We don’t want this code to be accessed unless k of the total n military generals agree. 

How do we solve this? 
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Secret Sharing (cont.)
There is a secret code that can be used to launch nuclear weapons. 
We don’t want this code to be accessed unless k of the total n military generals agree. 

How do we solve this? 

1. Construct a degree k-1 polynomial. Call it p(x). 

2. Encode the secret code as p(0) = “secret code”

3. Give each general a point that p(x) contains. 

a. i.e. General #1 gets (1, p(1)). General #2 gets (2, p(2)). So on… 

4. When any k general agree. They can share their points and they will have k points to 

reconstruct a degree k-1 polynomial. Then, they just plug in p(0) to find the secret.  

Lecture 3B -  Slide 18UC Berkeley EECS 70 - Tarang Srivastava

128A

.

-
-



Example of Secret Sharing
Tarang wants to set up a system that if any 3 of Michael, Jingjia, Nikki, Christine, Jet, Colby or 
Korinna agree then the midterm solutions will be released immediately. 
Suppose the secret code to the solutions is “6”. 

What degree polynomial does Tarang need to construct? __________

How many points do we need to generate? __________
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Example of Secret Sharing (cont. )
Suppose Jingjia, Nikki and Christine agree to release the solutions before the midterm. How would 
they do it? 
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Counting Polynomials
Assume for all these questions we’re working in GF(p)

How many unique degree at most k polynomials are there? 

How many exactly degree k polynomials are there? 

If we wish to find a degree 5 polynomial and we know only 3 points how many options 
do we have for the polynomials that currently go through our 3 points? 
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